Giải bài xích tập SGK Toán 7 Tập 2 trang 40, 41 giúp các em học sinh lớp 7 xem phương pháp giải những bài tập của Bài 6: Cộng, trừ đa thức thuộc chương 4 Đại số 7.

Bạn đang xem: Bài tập toán 7 tập 2

Tài liệu giải những bài tập 29, 30, 31, 32, 33, 34, 35, 36, 37, 38 cùng với nội dung bám quá sát chương trình sách giáo khoa trang 40, 41 Toán lớp 7 tập 2. Qua đó giúp học viên lớp 7 tìm hiểu thêm nắm vững hơn kỹ năng trên lớp. Mời các bạn cùng theo dõi bài xích tại đây


Giải bài xích tập Toán 7 bài 6: Cộng, trừ nhiều thức

Giải bài tập toán 7 trang 40 Tập 2Giải bài tập toán 7 trang 40 Tập 2: Luyện tập

Lý thuyết bài bác 6: Cộng, trừ nhiều thức

1. Cùng đa thức

Muốn cộng hai nhiều thức ta rất có thể lần lượt thực hiện các bước:

- Viết liên tiếp các hạng tử của hai đa thức đó với dấu của chúng.

- Thu gọn những hạng tử đồng dạng (nếu có).

2. Trừ đa thức

Muốn trừ hai nhiều thức ta hoàn toàn có thể lần lượt tiến hành các bước:

- Viết những hạng tử của đa thức thứ nhất cùng với vết của chúng.

- Viết tiếp các hạng tử của đa thức sản phẩm công nghệ hai với vệt ngược lại.

- Thu gọn những hạng tử đồng dạng (nếu có).


Giải bài tập toán 7 trang 40 Tập 2

Bài 29 (trang 40 SGK Toán 7 Tập 2)

Tính:

a) (x + y) + (x - y) ;

b) (x + y) - (x - y)


a) (x + y) + (x - y) = x + y + x - y

= (x + x) + (y - y) = 2x

b) (x + y) - (x - y) = x + y - x + y

= (x - x) + (y + y) = 2y


Bài 30 (trang 40 SGK Toán 7 Tập 2)

Tính tổng của đa thức p. = x2y + x3 – xy2 + 3 với Q = x3 + xy2 – xy – 6.


P + Q = (x2y + x3 – xy2 + 3) + (x3 + xy2 – xy – 6)

= x2y + x3 – xy2 + 3 + x3 + xy2 – xy – 6

= (x3 + x3) + x2y + (xy2 – xy2) – xy + (3 – 6)

= 2x3 + x2y – xy – 3

Vậy phường + Q = 2x3 + x2y – xy – 3.


Bài 31 (trang 40 SGK Toán 7 Tập 2)

Cho hai nhiều thức:

M = 3xyz – 3x2 + 5xy – 1

N = 5x2 + xyz – 5xy + 3 – y.

Tính M + N; M – N; N – M.


Để làm cho được vấn đề này các bạn thực hiện quá trình sau:

Bước 1 : Đặt phép tính.

Bước 2: vứt dấu ngoặc

Bước 3: Áp dụng các tính chất giao hoán và kết hợp để nhóm những đơn thức đồng dạng

Bước 4: Cộng, trừ những đơn thức đồng dạng

M + N = (3xyz – 3x2 + 5xy – 1) + (5x2 + xyz – 5xy + 3 – y)

= 3xyz – 3x2 + 5xy – 1 + 5x2 + xyz – 5xy + 3 – y

= (3xyz + xyz)+( –3x2 + 5x2) + (5xy – 5xy) – y + ( – 1+3)

= 4xyz + 2x2 – y + 2

M – N = (3xyz – 3x2 + 5xy – 1) – (5x2 + xyz – 5xy + 3 – y)

= 3xyz – 3x2 + 5xy – 1 – 5x2 – xyz + 5xy – 3 + y

= (– 3x2 – 5x2) + (3xyz – xyz) + (5xy + 5xy) + y +(– 1 – 3)

= –8x2 + 2xyz + 10xy + y – 4.

N – M = (5x2 + xyz – 5xy + 3 – y) – (3xyz – 3x2 + 5xy – 1)

= 5x2 + xyz – 5xy + 3 – y – 3xyz + 3x2 – 5xy +1

= (5x2 + 3x2)+ (xyz – 3xyz)+( – 5xy – 5xy) + (3 + 1 )– y

= 8x2 – 2xyz – 10xy – y + 4.

Lưu ý: bởi M – N và N – M là hai nhiều thức đối nhau nên

N – M = 8x2 – 2xyz – 10xy – y + 4

(Ta chỉ cần đổi dấu mỗi hạng tử của nhiều thức M – N là nhận được N – M).


Bài 32 (trang 40 SGK Toán 7 Tập 2)


Tìm nhiều thức p và đa thức Q, biết:

a) phường + (x2 – 2y2) = x2 - y2 + 3y2 – 1

b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5


Xem gợi nhắc đáp án

a) p + (x2 – 2y2) = x2 - y2 + 3y2 – 1

⇒ p. = (x2 – y2 + 3y2 – 1) – (x2 – 2y2)

= x2 – y2 + 3y2 – 1 – x2 + 2y2

= (x2 – x2) + ( – y2 + 3y2+ 2y2) – 1

= 0+ 4y2 – 1= 4y2 – 1.

Vậy p = 4y2 – 1.

b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5

⇒ Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)

= xy + 2x2 – 3xyz + 5 + 5x2 – xyz

= (2x2+ 5x2) + (- 3xyz – xyz) + xy + 5

= 7x2 – 4xyz + xy + 5.


Bài 33 (trang 40 SGK Toán 7 Tập 2)

Tính tổng của hai đa thức:

a) M = x2y + 0,5xy3 – 7,5x3y2 + x3 cùng N = 3xy3 – x2y + 5,5x3y2

b) p = x5 + xy + 0,3y2 – x2y3 – 2 và Q = x2y3 + 5 – 1,3y2


Xem lưu ý đáp án

a) Ta có: M = x2y + 0,5xy3 – 7,5x3y2 + x3

và N = 3xy3 – x2y + 5,5x3y2

⟹ M + N = (x2y + 0,5xy3 – 7,5x3y2 + x3) + (3xy3 – x2y + 5,5x3y2)

= x2y + 0,5xy3 – 7,5x3y2 + x3+ 3xy3 – x2y + 5,5x3y2

= (– 7,5x3y2 + 5,5x3y2) + (x2y – x2y ) + (0,5xy3 + 3xy3)+ x3

= –2x3y2 + 0 + 3,5xy3 + x3

= –2x3y2 + 3,5xy3 + x3.


b) Ta có: p = x5 + xy + 0,3y2 – x2y3 – 2

và Q = x2y3 + 5 – 1,3y2.

⟹ p. + Q = (x5 + xy + 0,3y2 – x2y3 – 2) + (x2y3 + 5 – 1,3y2)

= x5 + xy + 0,3y2 – x2y3 – 2 + x2y3 + 5 – 1,3y2

= x5 +(– x2y3 + x2y3)+ (0,3y2 – 1,3y2)+ xy +(– 2 + 5)

= x5 + 0 – y2 + xy + 3.

= x5 – y2 + xy + 3.


Giải bài xích tập toán 7 trang 40 Tập 2: Luyện tập

Bài 34 (trang 40 SGK Toán 7 Tập 2)

Tính tổng của những đa thức sau:

a) p. = x2y + xy2 – 5x2y2 + x3 với Q = 3xy2 – x2y + x2y2

b) M = x3 + xy + y2 – x2y2 – 2 với N = x2y2 + 5 – y2


Xem gợi ý đáp án

a) Ta có: p = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2

⇒ p. + Q = (x2y + xy2 – 5x2y2 + x3) + (3xy2 – x2y + x2y2)

= x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2

= x3 +(– 5x2y2 + x2y2)+ (x2y – x2y) + (xy2+ 3xy2)

= x3 – 4x2y2 + 0 + 4xy2

= x3 – 4x2y2 + 4xy2

b) Ta có: M = x3 + xy + y2 – x2y2 – 2 cùng N = x2y2 + 5 – y2

⇒ M + N = (x3 + xy + y2 – x2y2 – 2) + (x2y2 + 5 – y2)

= x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2

= x3 + (– x2y2 + x2y2) + (y2 – y2) + xy + (– 2 + 5)

= x3 + 0 + 0 + xy + 3

= x3 + xy + 3.


Bài 35 (trang 40 SGK Toán 7 Tập 2)

Cho hai đa thức:

M = x2 – 2xy + y2;

N = y2 + 2xy + x2 + 1.

a) Tính M + N;

b) Tính M – N.


Xem lưu ý đáp án

a) M + N = (x2 – 2xy + y2)+ (y2 + 2xy + x2 + 1)

= x2 – 2xy + y2 + y2 + 2xy + x2 + 1

= (x2+ x2) + (y2 + y2) + (– 2xy+ 2xy) + 1

= 2x2 + 2y2 + 0 + 1

= 2x2 + 2y2 +1

b) M – N = (x2 – 2xy + y2)– (y2 +2xy +x2 + 1)

= x2 – 2xy + y2 – y2 – 2xy – x2 – 1

= (x2– x2) + (y2 – y2) + (– 2xy – 2xy) – 1

= 0 + 0 – 4xy – 1

= – 4xy – 1.


Bài 36 (trang 41 SGK Toán 7 Tập 2)

Tính cực hiếm của mỗi nhiều thức sau:

a) x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 và y = 4

b) xy – x2y2 + x4y4 – x6y6 + x8y8 tại x = –1 với y = –1


Xem gợi nhắc đáp án

a) gọi A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3

Trước không còn ta thu gọn đa thức :

A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3

= (– 3x3+ 3x3) + x2 + 2xy + (2y3– y3)

= 0 + x2 + 2xy + y3.

= x2 + 2xy + y3.

Thay x = 5 ; y = 4 vào A ta được :

A = 52+ 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy quý giá biểu thức x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 trên x = 5 ; y = 4 bởi 129.

b) gồm 2 bí quyết giải

Cách 1: khi x = -1, y = -1 thì x.y = (-1).(-1) = 1.

Có : B = xy – x2y2 + x4y4 – x6y6 + x8y8

= xy – (xy)2 + (xy)4 – (xy)6 + (xy)8

= 1 - 1 + 1 - 1 + 1 = 1

Cách 2 : gọi B = xy – x2y2 + x4y4 – x6y6 + x8y8

Thay x = –1 ; y = –1 vào biểu thức.

B = (–1).(–1) – (–1)2.(–1)2+ (–1)4.(–1)4 – (–1)6.(–1)6 + (–1)8.(–1)8

= + 1 – 1.1 + 1.1 – 1.1+ 1.1

= 1 – 1 + 1 – 1 + 1

= 1


Bài 37 (trang 34 SGK Toán 7 Tập 2)

Viết một đa thức bậc 3 với hai biến hóa x, y với có tía hạng tử.

Xem thêm: Giải Toán Lớp 5 Trang 143 Luyện Tập Thời Gian, Giải Toán Lớp 5 Trang 143, Luyện Tập


Xem gợi nhắc đáp án

Có vô số cách thức viết, chẳng hạn:

1. X3 + x2y – xy2

2. X3 + xy + 1

3. X + y3 + 1


Bài 38 (trang 34 SGK Toán 7 Tập 2)

Cho các đa thức:

A = x2 – 2y + xy + 1;

B = x2 + y – x2y2 – 1

Tìm đa thức C sao cho:

a) C = A + B;

b) C + A = B.


Xem gợi ý đáp án

Ta gồm : A = x2 – 2y + xy + 1; B = x2 + y – x2y2 – 1

a) C = A + B = (x2 – 2y + xy + 1) + (x2 + y – x2y2 – 1)

C = x2 – 2y + xy + 1 + x2 + y – x2y2 – 1

C = (x2+ x2) + (– 2y + y) + xy – x2y2 + (1 – 1)

C = 2x2 – y + xy – x2y2 + 0

C = 2x2 – y + xy – x2y2

b) C + A = B ⟹ C = B – A

C = (x2 + y – x2y2 – 1) – (x2 – 2y + xy + 1)

C = x2 + y – x2y2 – 1 – x2 + 2y – xy – 1

C = (x2– x2) + (y + 2y) – x2y2 – xy + ( - 1 – 1)

C = 0 + 3y – x2y2 – xy – 2

C = 3y – x2y2 – xy – 2


Chia sẻ bởi:
*
Lê Huyền Trang
tải về
Mời các bạn đánh giá!
Lượt tải: 24.442 Lượt xem: 26.517 Dung lượng: 439,2 KB
Liên kết thiết lập về

Link tải về chính thức:

Giải Toán 7 bài xích 6: Cộng, trừ đa thức tải về Xem
Sắp xếp theo mặc địnhMới nhấtCũ nhất
*

Xóa Đăng nhập nhằm Gửi
Chủ đề liên quan
Mới độc nhất trong tuần
Giải Toán 7 - Tập 2
Đại số - Chương 3: những thống kê Đại số - Chương 4: Biểu thức Đại số Hình học - Chương 3: quan hệ nam nữ giữa những yếu tố trong Tam giác. Các đường đồng quy của Tam giác
Tài khoản giới thiệu Điều khoản Bảo mật tương tác Facebook Twitter DMCA