Xét phương trình: (ax^2+bx+c=0) ((a e 0)) cùng biệt thức: (Delta =b^2-4ac.)

+) nếu như (Delta > 0) thì phương trình có hai nghiệm phân biệt:

(x_1=dfrac-b+sqrtDelta2a; x_2=dfrac-b-sqrtDelta2a)

+) giả dụ (Delta 0).

Bạn đang xem: Bài 16 trang 45 sgk toán 9 tập 2

Do đó phương trình bao gồm hai nghiệm phân biệt:

(x_1=dfrac-(-7)-sqrt252.2=dfrac7-54=dfrac12)

(x_2 = dfrac-(-7)+sqrt252.2=dfrac7+54=3).


LG b

(6x^2 + x + 5 = 0)

Phương pháp giải:

Xét phương trình: (ax^2+bx+c=0) ((a e 0)) cùng biệt thức: (Delta =b^2-4ac.)

+) nếu như (Delta > 0) thì phương trình tất cả hai nghiệm phân biệt:

(x_1=dfrac-b+sqrtDelta2a; x_2=dfrac-b-sqrtDelta2a)

+) ví như (Delta (6x^2 + x - 5 = 0)

Phương pháp giải:

Xét phương trình: (ax^2+bx+c=0) ((a e 0)) với biệt thức: (Delta =b^2-4ac.)

+) trường hợp (Delta > 0) thì phương trình có hai nghiệm phân biệt:

(x_1=dfrac-b+sqrtDelta2a; x_2=dfrac-b-sqrtDelta2a)

+) trường hợp (Delta 0 )

Do kia phương trình gồm hai nghiệm phân biệt:

(x_1 = dfrac-1+sqrt1212.6=dfrac-1+1112= dfrac56)

(x_2 = dfrac-1-sqrt1212.6=dfrac-1-1112= -1).

Xem thêm: Nghĩa Của Từ Luxury Nghĩa Là Gì, Luxury Tiếng Anh Là Gì


LG d

(3x^2 + 5x + 2 = 0)

Phương pháp giải:

Xét phương trình: (ax^2+bx+c=0) ((a e 0)) và biệt thức: (Delta =b^2-4ac.)

+) giả dụ (Delta > 0) thì phương trình tất cả hai nghiệm phân biệt:

(x_1=dfrac-b+sqrtDelta2a; x_2=dfrac-b-sqrtDelta2a)

+) nếu như (Delta 0)

Do kia phương trình gồm hai nghiệm phân biệt:

(x_1 = dfrac-5+sqrt 12.3=dfrac-46 =-dfrac23)

(x_2 = dfrac-5-sqrt 12.3=dfrac-66 =-1).


LG e

(y^2 - 8y + 16 = 0)

Phương pháp giải:

Xét phương trình: (ax^2+bx+c=0) ((a e 0)) với biệt thức: (Delta =b^2-4ac.)

+) giả dụ (Delta > 0) thì phương trình tất cả hai nghiệm phân biệt:

(x_1=dfrac-b+sqrtDelta2a; x_2=dfrac-b-sqrtDelta2a)

+) nếu (Delta (16z^2 + 24z + 9 = 0)

Phương pháp giải:

Xét phương trình: (ax^2+bx+c=0) ((a e 0)) cùng biệt thức: (Delta =b^2-4ac.)

+) trường hợp (Delta > 0) thì phương trình gồm hai nghiệm phân biệt:

(x_1=dfrac-b+sqrtDelta2a; x_2=dfrac-b-sqrtDelta2a)

+) giả dụ (Delta

*
Bình luận
*
phân tách sẻ
Bình chọn:



>> (Hot) Đã tất cả SGK lớp 10 liên kết tri thức, chân trời sáng tạo, cánh diều năm học bắt đầu 2022-2023. Coi ngay!
Bài tiếp theo
*


Báo lỗi - Góp ý
*
*
*
*
*
*
*
*






*
*



giữ hộ góp ý Hủy quăng quật

Cảm ơn bạn đã sử dụng herphangout.com. Đội ngũ cô giáo cần cải thiện điều gì để các bạn cho bài viết này 5* vậy?